BaseEmbedder
¶
The Base Embedder used for creating embedding models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_model |
The main embedding model to be used for extracting document and word embedding |
None |
|
word_embedding_model |
The embedding model used for extracting word
embeddings only. If this model is selected,
then the |
None |
Source code in bertopic\backend\_base.py
class BaseEmbedder:
"""The Base Embedder used for creating embedding models.
Arguments:
embedding_model: The main embedding model to be used for extracting
document and word embedding
word_embedding_model: The embedding model used for extracting word
embeddings only. If this model is selected,
then the `embedding_model` is purely used for
creating document embeddings.
"""
def __init__(self, embedding_model=None, word_embedding_model=None):
self.embedding_model = embedding_model
self.word_embedding_model = word_embedding_model
def embed(self, documents: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n documents/words into an n-dimensional
matrix of embeddings.
Arguments:
documents: A list of documents or words to be embedded
verbose: Controls the verbosity of the process
Returns:
Document/words embeddings with shape (n, m) with `n` documents/words
that each have an embeddings size of `m`
"""
pass
def embed_words(self, words: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n words into an n-dimensional
matrix of embeddings.
Arguments:
words: A list of words to be embedded
verbose: Controls the verbosity of the process
Returns:
Word embeddings with shape (n, m) with `n` words
that each have an embeddings size of `m`
"""
return self.embed(words, verbose)
def embed_documents(self, document: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n words into an n-dimensional
matrix of embeddings.
Arguments:
document: A list of documents to be embedded
verbose: Controls the verbosity of the process
Returns:
Document embeddings with shape (n, m) with `n` documents
that each have an embeddings size of `m`
"""
return self.embed(document, verbose)
embed(self, documents, verbose=False)
¶
Embed a list of n documents/words into an n-dimensional matrix of embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents |
List[str] |
A list of documents or words to be embedded |
required |
verbose |
bool |
Controls the verbosity of the process |
False |
Returns:
Type | Description |
---|---|
ndarray |
Document/words embeddings with shape (n, m) with |
Source code in bertopic\backend\_base.py
def embed(self, documents: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n documents/words into an n-dimensional
matrix of embeddings.
Arguments:
documents: A list of documents or words to be embedded
verbose: Controls the verbosity of the process
Returns:
Document/words embeddings with shape (n, m) with `n` documents/words
that each have an embeddings size of `m`
"""
pass
embed_documents(self, document, verbose=False)
¶
Embed a list of n words into an n-dimensional matrix of embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
document |
List[str] |
A list of documents to be embedded |
required |
verbose |
bool |
Controls the verbosity of the process |
False |
Returns:
Type | Description |
---|---|
ndarray |
Document embeddings with shape (n, m) with |
Source code in bertopic\backend\_base.py
def embed_documents(self, document: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n words into an n-dimensional
matrix of embeddings.
Arguments:
document: A list of documents to be embedded
verbose: Controls the verbosity of the process
Returns:
Document embeddings with shape (n, m) with `n` documents
that each have an embeddings size of `m`
"""
return self.embed(document, verbose)
embed_words(self, words, verbose=False)
¶
Embed a list of n words into an n-dimensional matrix of embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
words |
List[str] |
A list of words to be embedded |
required |
verbose |
bool |
Controls the verbosity of the process |
False |
Returns:
Type | Description |
---|---|
ndarray |
Word embeddings with shape (n, m) with |
Source code in bertopic\backend\_base.py
def embed_words(self, words: List[str], verbose: bool = False) -> np.ndarray:
"""Embed a list of n words into an n-dimensional
matrix of embeddings.
Arguments:
words: A list of words to be embedded
verbose: Controls the verbosity of the process
Returns:
Word embeddings with shape (n, m) with `n` words
that each have an embeddings size of `m`
"""
return self.embed(words, verbose)