Barchart
¶
Visualize a barchart of selected topics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model |
A fitted BERTopic instance. |
required | |
topics |
List[int] |
A selection of topics to visualize. |
None |
top_n_topics |
int |
Only select the top n most frequent topics. |
8 |
n_words |
int |
Number of words to show in a topic |
5 |
custom_labels |
Union[bool, str] |
If bool, whether to use custom topic labels that were defined using
|
False |
title |
str |
Title of the plot. |
'<b>Topic Word Scores</b>' |
width |
int |
The width of each figure. |
250 |
height |
int |
The height of each figure. |
250 |
autoscale |
bool |
Whether to automatically calculate the height of the figures to fit the whole bar text |
False |
Returns:
Type | Description |
---|---|
fig |
A plotly figure |
Examples:
To visualize the barchart of selected topics simply run:
topic_model.visualize_barchart()
Or if you want to save the resulting figure:
fig = topic_model.visualize_barchart()
fig.write_html("path/to/file.html")
Source code in bertopic\plotting\_barchart.py
def visualize_barchart(
topic_model,
topics: List[int] = None,
top_n_topics: int = 8,
n_words: int = 5,
custom_labels: Union[bool, str] = False,
title: str = "<b>Topic Word Scores</b>",
width: int = 250,
height: int = 250,
autoscale: bool = False,
) -> go.Figure:
"""Visualize a barchart of selected topics.
Arguments:
topic_model: A fitted BERTopic instance.
topics: A selection of topics to visualize.
top_n_topics: Only select the top n most frequent topics.
n_words: Number of words to show in a topic
custom_labels: If bool, whether to use custom topic labels that were defined using
`topic_model.set_topic_labels`.
If `str`, it uses labels from other aspects, e.g., "Aspect1".
title: Title of the plot.
width: The width of each figure.
height: The height of each figure.
autoscale: Whether to automatically calculate the height of the figures to fit the whole bar text
Returns:
fig: A plotly figure
Examples:
To visualize the barchart of selected topics
simply run:
```python
topic_model.visualize_barchart()
```
Or if you want to save the resulting figure:
```python
fig = topic_model.visualize_barchart()
fig.write_html("path/to/file.html")
```
<iframe src="../../getting_started/visualization/bar_chart.html"
style="width:1100px; height: 660px; border: 0px;""></iframe>
"""
colors = itertools.cycle(["#D55E00", "#0072B2", "#CC79A7", "#E69F00", "#56B4E9", "#009E73", "#F0E442"])
# Select topics based on top_n and topics args
freq_df = topic_model.get_topic_freq()
freq_df = freq_df.loc[freq_df.Topic != -1, :]
if topics is not None:
topics = list(topics)
elif top_n_topics is not None:
topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
else:
topics = sorted(freq_df.Topic.to_list()[0:6])
# Initialize figure
if isinstance(custom_labels, str):
subplot_titles = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in topics]
subplot_titles = ["_".join([label[0] for label in labels[:4]]) for labels in subplot_titles]
subplot_titles = [label if len(label) < 30 else label[:27] + "..." for label in subplot_titles]
elif topic_model.custom_labels_ is not None and custom_labels:
subplot_titles = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in topics]
else:
subplot_titles = [f"Topic {topic}" for topic in topics]
columns = 4
rows = int(np.ceil(len(topics) / columns))
fig = make_subplots(
rows=rows,
cols=columns,
shared_xaxes=False,
horizontal_spacing=0.1,
vertical_spacing=0.4 / rows if rows > 1 else 0,
subplot_titles=subplot_titles,
)
# Add barchart for each topic
row = 1
column = 1
for topic in topics:
words = [word + " " for word, _ in topic_model.get_topic(topic)][:n_words][::-1]
scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1]
fig.add_trace(
go.Bar(x=scores, y=words, orientation="h", marker_color=next(colors)),
row=row,
col=column,
)
if autoscale:
if len(words) > 12:
height = 250 + (len(words) - 12) * 11
if len(words) > 9:
fig.update_yaxes(tickfont=dict(size=(height - 140) // len(words)))
if column == columns:
column = 1
row += 1
else:
column += 1
# Stylize graph
fig.update_layout(
template="plotly_white",
showlegend=False,
title={
"text": f"{title}",
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
"font": dict(size=22, color="Black"),
},
width=width * 4,
height=height * rows if rows > 1 else height * 1.3,
hoverlabel=dict(bgcolor="white", font_size=16, font_family="Rockwell"),
)
fig.update_xaxes(showgrid=True)
fig.update_yaxes(showgrid=True)
return fig