DTM
¶
Visualize topics over time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model |
A fitted BERTopic instance. |
required | |
topics_over_time |
DataFrame |
The topics you would like to be visualized with the corresponding topic representation |
required |
top_n_topics |
int |
To visualize the most frequent topics instead of all |
None |
topics |
List[int] |
Select which topics you would like to be visualized |
None |
normalize_frequency |
bool |
Whether to normalize each topic's frequency individually |
False |
custom_labels |
Union[bool, str] |
If bool, whether to use custom topic labels that were defined using
|
False |
title |
str |
Title of the plot. |
'<b>Topics over Time</b>' |
width |
int |
The width of the figure. |
1250 |
height |
int |
The height of the figure. |
450 |
Returns:
Type | Description |
---|---|
Figure |
A plotly.graph_objects.Figure including all traces |
Examples:
To visualize the topics over time, simply run:
topics_over_time = topic_model.topics_over_time(docs, timestamps)
topic_model.visualize_topics_over_time(topics_over_time)
Or if you want to save the resulting figure:
fig = topic_model.visualize_topics_over_time(topics_over_time)
fig.write_html("path/to/file.html")
Source code in bertopic\plotting\_topics_over_time.py
def visualize_topics_over_time(
topic_model,
topics_over_time: pd.DataFrame,
top_n_topics: int = None,
topics: List[int] = None,
normalize_frequency: bool = False,
custom_labels: Union[bool, str] = False,
title: str = "<b>Topics over Time</b>",
width: int = 1250,
height: int = 450,
) -> go.Figure:
"""Visualize topics over time.
Arguments:
topic_model: A fitted BERTopic instance.
topics_over_time: The topics you would like to be visualized with the
corresponding topic representation
top_n_topics: To visualize the most frequent topics instead of all
topics: Select which topics you would like to be visualized
normalize_frequency: Whether to normalize each topic's frequency individually
custom_labels: If bool, whether to use custom topic labels that were defined using
`topic_model.set_topic_labels`.
If `str`, it uses labels from other aspects, e.g., "Aspect1".
title: Title of the plot.
width: The width of the figure.
height: The height of the figure.
Returns:
A plotly.graph_objects.Figure including all traces
Examples:
To visualize the topics over time, simply run:
```python
topics_over_time = topic_model.topics_over_time(docs, timestamps)
topic_model.visualize_topics_over_time(topics_over_time)
```
Or if you want to save the resulting figure:
```python
fig = topic_model.visualize_topics_over_time(topics_over_time)
fig.write_html("path/to/file.html")
```
<iframe src="../../getting_started/visualization/trump.html"
style="width:1000px; height: 680px; border: 0px;""></iframe>
"""
colors = [
"#E69F00",
"#56B4E9",
"#009E73",
"#F0E442",
"#D55E00",
"#0072B2",
"#CC79A7",
]
# Select topics based on top_n and topics args
freq_df = topic_model.get_topic_freq()
freq_df = freq_df.loc[freq_df.Topic != -1, :]
if topics is not None:
selected_topics = list(topics)
elif top_n_topics is not None:
selected_topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
else:
selected_topics = sorted(freq_df.Topic.to_list())
# Prepare data
if isinstance(custom_labels, str):
topic_names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in topics]
topic_names = ["_".join([label[0] for label in labels[:4]]) for labels in topic_names]
topic_names = [label if len(label) < 30 else label[:27] + "..." for label in topic_names]
topic_names = {key: topic_names[index] for index, key in enumerate(topic_model.topic_labels_.keys())}
elif topic_model.custom_labels_ is not None and custom_labels:
topic_names = {
key: topic_model.custom_labels_[key + topic_model._outliers] for key, _ in topic_model.topic_labels_.items()
}
else:
topic_names = {
key: value[:40] + "..." if len(value) > 40 else value for key, value in topic_model.topic_labels_.items()
}
topics_over_time["Name"] = topics_over_time.Topic.map(topic_names)
data = topics_over_time.loc[topics_over_time.Topic.isin(selected_topics), :].sort_values(["Topic", "Timestamp"])
# Add traces
fig = go.Figure()
for index, topic in enumerate(data.Topic.unique()):
trace_data = data.loc[data.Topic == topic, :]
topic_name = trace_data.Name.values[0]
words = trace_data.Words.values
if normalize_frequency:
y = normalize(trace_data.Frequency.values.reshape(1, -1))[0]
else:
y = trace_data.Frequency
fig.add_trace(
go.Scatter(
x=trace_data.Timestamp,
y=y,
mode="lines",
marker_color=colors[index % 7],
hoverinfo="text",
name=topic_name,
hovertext=[f"<b>Topic {topic}</b><br>Words: {word}" for word in words],
)
)
# Styling of the visualization
fig.update_xaxes(showgrid=True)
fig.update_yaxes(showgrid=True)
fig.update_layout(
yaxis_title="Normalized Frequency" if normalize_frequency else "Frequency",
title={
"text": f"{title}",
"y": 0.95,
"x": 0.40,
"xanchor": "center",
"yanchor": "top",
"font": dict(size=22, color="Black"),
},
template="simple_white",
width=width,
height=height,
hoverlabel=dict(bgcolor="white", font_size=16, font_family="Rockwell"),
legend=dict(
title="<b>Global Topic Representation",
),
)
return fig