Heatmap
¶
Visualize a heatmap of the topic's similarity matrix.
Based on the cosine similarity matrix between topic embeddings (either c-TF-IDF or the embeddings from the embedding model), a heatmap is created showing the similarity between topics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model
|
A fitted BERTopic instance. |
required | |
topics
|
List[int]
|
A selection of topics to visualize. |
None
|
top_n_topics
|
int
|
Only select the top n most frequent topics. |
None
|
n_clusters
|
int
|
Create n clusters and order the similarity matrix by those clusters. |
None
|
use_ctfidf
|
bool
|
Whether to calculate distances between topics based on c-TF-IDF embeddings. If False, the embeddings from the embedding model are used. |
False
|
custom_labels
|
Union[bool, str]
|
If bool, whether to use custom topic labels that were defined using
|
False
|
title
|
str
|
Title of the plot. |
'<b>Similarity Matrix</b>'
|
width
|
int
|
The width of the figure. |
800
|
height
|
int
|
The height of the figure. |
800
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
A plotly figure |
Examples: To visualize the similarity matrix of topics simply run:
topic_model.visualize_heatmap()
Or if you want to save the resulting figure:
fig = topic_model.visualize_heatmap()
fig.write_html("path/to/file.html")
Source code in bertopic\plotting\_heatmap.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|