Hierarchical Documents
¶
Visualize documents and their topics in 2D at different levels of hierarchy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model
|
A fitted BERTopic instance. |
required | |
docs
|
List[str]
|
The documents you used when calling either |
required |
hierarchical_topics
|
DataFrame
|
A dataframe that contains a hierarchy of topics represented by their parents and their children |
required |
topics
|
List[int]
|
A selection of topics to visualize.
Not to be confused with the topics that you get from |
None
|
embeddings
|
ndarray
|
The embeddings of all documents in |
None
|
reduced_embeddings
|
ndarray
|
The 2D reduced embeddings of all documents in |
None
|
sample
|
Union[float, int]
|
The percentage of documents in each topic that you would like to keep. Value can be between 0 and 1. Setting this value to, for example, 0.1 (10% of documents in each topic) makes it easier to visualize millions of documents as a subset is chosen. |
None
|
hide_annotations
|
bool
|
Hide the names of the traces on top of each cluster. |
False
|
hide_document_hover
|
bool
|
Hide the content of the documents when hovering over specific points. Helps to speed up generation of visualizations. |
True
|
nr_levels
|
int
|
The number of levels to be visualized in the hierarchy. First, the distances
in |
10
|
level_scale
|
str
|
Whether to apply a linear or logarithmic (log) scale levels of the distance vector. Linear scaling will perform an equal number of merges at each level while logarithmic scaling will perform more mergers in earlier levels to provide more resolution at higher levels (this can be used for when the number of topics is large). |
'linear'
|
custom_labels
|
Union[bool, str]
|
If bool, whether to use custom topic labels that were defined using
|
False
|
title
|
str
|
Title of the plot. |
'<b>Hierarchical Documents and Topics</b>'
|
width
|
int
|
The width of the figure. |
1200
|
height
|
int
|
The height of the figure. |
750
|
Examples: To visualize the topics simply run:
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics)
Do note that this re-calculates the embeddings and reduces them to 2D. The advised and preferred pipeline for using this function is as follows:
from sklearn.datasets import fetch_20newsgroups
from sentence_transformers import SentenceTransformer
from bertopic import BERTopic
from umap import UMAP
# Prepare embeddings
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = sentence_model.encode(docs, show_progress_bar=False)
# Train BERTopic and extract hierarchical topics
topic_model = BERTopic().fit(docs, embeddings)
hierarchical_topics = topic_model.hierarchical_topics(docs)
# Reduce dimensionality of embeddings, this step is optional
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)
# Run the visualization with the original embeddings
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings)
# Or, if you have reduced the original embeddings already:
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
Or if you want to save the resulting figure:
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings)
fig.write_html("path/to/file.html")
Note
This visualization was inspired by the scatter plot representation of Doc2Map: https://github.com/louisgeisler/Doc2Map
Source code in bertopic\plotting\_hierarchical_documents.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|