Distribution
¶
Visualize the distribution of topic probabilities.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model |
A fitted BERTopic instance. |
required | |
probabilities |
ndarray |
An array of probability scores |
required |
min_probability |
float |
The minimum probability score to visualize. All others are ignored. |
0.015 |
custom_labels |
Union[bool, str] |
If bool, whether to use custom topic labels that were defined using
|
False |
title |
str |
Title of the plot. |
'<b>Topic Probability Distribution</b>' |
width |
int |
The width of the figure. |
800 |
height |
int |
The height of the figure. |
600 |
Examples:
Make sure to fit the model before and only input the probabilities of a single document:
topic_model.visualize_distribution(probabilities[0])
Or if you want to save the resulting figure:
fig = topic_model.visualize_distribution(probabilities[0])
fig.write_html("path/to/file.html")
Source code in bertopic\plotting\_distribution.py
def visualize_distribution(
topic_model,
probabilities: np.ndarray,
min_probability: float = 0.015,
custom_labels: Union[bool, str] = False,
title: str = "<b>Topic Probability Distribution</b>",
width: int = 800,
height: int = 600,
) -> go.Figure:
"""Visualize the distribution of topic probabilities.
Arguments:
topic_model: A fitted BERTopic instance.
probabilities: An array of probability scores
min_probability: The minimum probability score to visualize.
All others are ignored.
custom_labels: If bool, whether to use custom topic labels that were defined using
`topic_model.set_topic_labels`.
If `str`, it uses labels from other aspects, e.g., "Aspect1".
title: Title of the plot.
width: The width of the figure.
height: The height of the figure.
Examples:
Make sure to fit the model before and only input the
probabilities of a single document:
```python
topic_model.visualize_distribution(probabilities[0])
```
Or if you want to save the resulting figure:
```python
fig = topic_model.visualize_distribution(probabilities[0])
fig.write_html("path/to/file.html")
```
<iframe src="../../getting_started/visualization/probabilities.html"
style="width:1000px; height: 500px; border: 0px;""></iframe>
"""
if len(probabilities.shape) != 1:
raise ValueError(
"This visualization cannot be used if you have set `calculate_probabilities` to False "
"as it uses the topic probabilities of all topics. "
)
if len(probabilities[probabilities > min_probability]) == 0:
raise ValueError(
"There are no values where `min_probability` is higher than the "
"probabilities that were supplied. Lower `min_probability` to prevent this error."
)
# Get values and indices equal or exceed the minimum probability
labels_idx = np.argwhere(probabilities >= min_probability).flatten()
vals = probabilities[labels_idx].tolist()
# Create labels
if isinstance(custom_labels, str):
labels = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in labels_idx]
labels = ["_".join([label[0] for label in l[:4]]) for l in labels] # noqa: E741
labels = [label if len(label) < 30 else label[:27] + "..." for label in labels]
elif topic_model.custom_labels_ is not None and custom_labels:
labels = [topic_model.custom_labels_[idx + topic_model._outliers] for idx in labels_idx]
else:
labels = []
for idx in labels_idx:
words = topic_model.get_topic(idx)
if words:
label = [word[0] for word in words[:5]]
label = f"<b>Topic {idx}</b>: {'_'.join(label)}"
label = label[:40] + "..." if len(label) > 40 else label
labels.append(label)
else:
vals.remove(probabilities[idx])
# Create Figure
fig = go.Figure(
go.Bar(
x=vals,
y=labels,
marker=dict(
color="#C8D2D7",
line=dict(color="#6E8484", width=1),
),
orientation="h",
)
)
fig.update_layout(
xaxis_title="Probability",
title={
"text": f"{title}",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
"font": dict(size=22, color="Black"),
},
template="simple_white",
width=width,
height=height,
hoverlabel=dict(bgcolor="white", font_size=16, font_family="Rockwell"),
)
return fig