Hierarchy
¶
Visualize a hierarchical structure of the topics.
A ward linkage function is used to perform the hierarchical clustering based on the cosine distance matrix between topic embeddings (either c-TF-IDF or the embeddings from the embedding model).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
topic_model
|
A fitted BERTopic instance. |
required | |
orientation
|
str
|
The orientation of the figure. Either 'left' or 'bottom' |
'left'
|
topics
|
List[int]
|
A selection of topics to visualize |
None
|
top_n_topics
|
int
|
Only select the top n most frequent topics |
None
|
use_ctfidf
|
bool
|
Whether to calculate distances between topics based on c-TF-IDF embeddings. If False, the embeddings from the embedding model are used. |
True
|
custom_labels
|
Union[bool, str]
|
If bool, whether to use custom topic labels that were defined using
|
False
|
title
|
str
|
Title of the plot. |
'<b>Hierarchical Clustering</b>'
|
width
|
int
|
The width of the figure. Only works if orientation is set to 'left' |
1000
|
height
|
int
|
The height of the figure. Only works if orientation is set to 'bottom' |
600
|
hierarchical_topics
|
DataFrame
|
A dataframe that contains a hierarchy of topics
represented by their parents and their children.
NOTE: The hierarchical topic names are only visualized
if both |
None
|
linkage_function
|
Callable[[csr_matrix], ndarray]
|
The linkage function to use. Default is:
|
None
|
distance_function
|
Callable[[csr_matrix], csr_matrix]
|
The distance function to use on the c-TF-IDF matrix. Default is:
|
None
|
color_threshold
|
int
|
Value at which the separation of clusters will be made which will result in different colors for different clusters. A higher value will typically lead in less colored clusters. |
1
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
A plotly figure |
Examples: To visualize the hierarchical structure of topics simply run:
topic_model.visualize_hierarchy()
If you also want the labels visualized of hierarchical topics, run the following:
# Extract hierarchical topics and their representations
hierarchical_topics = topic_model.hierarchical_topics(docs)
# Visualize these representations
topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics)
If you want to save the resulting figure:
fig = topic_model.visualize_hierarchy()
fig.write_html("path/to/file.html")
Source code in bertopic\plotting\_hierarchy.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|