Hierarchical Topic Modeling
When tweaking your topic model, the number of topics that are generated has a large effect on the quality of the topic representations. Some topics could be merged and having an understanding of the effect will help you understand which topics should and which should not be merged.
That is where hierarchical topic modeling comes in. It tries to model the possible hierarchical nature of the topics you have created to understand which topics are similar to each other. Moreover, you will have more insight into sub-topics that might exist in your data.
In BERTopic, we can approximate this potential hierarchy by making use of our topic-term matrix (c-TF-IDF matrix). This matrix contains information about the importance of every word in every topic and makes for a nice numerical representation of our topics. The smaller the distance between two c-TF-IDF representations, the more similar we assume they are. In practice, this process of merging topics is done through the hierarchical clustering capabilities of scipy
(see here). It allows for several linkage methods through which we can approximate our topic hierarchy. As a default, we are using the ward but many others are available.
Whenever we merge two topics, we can calculate the c-TF-IDF representation of these two merged by summing their bag-of-words representation. We assume that two sets of topics are merged and that all others are kept the same, regardless of their location in the hierarchy. This helps us isolate the potential effect of merging sets of topics. As a result, we can see the topic representation at each level in the tree.
Example¶
To demonstrate hierarchical topic modeling with BERTopic, we use the 20 Newsgroups dataset to see how the topics that we uncover are represented in the 20 categories of documents.
First, we train a basic BERTopic model:
from bertopic import BERTopic
from sklearn.datasets import fetch_20newsgroups
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))["data"]
topic_model = BERTopic(verbose=True)
topics, probs = topic_model.fit_transform(docs)
Next, we can use our fitted BERTopic model to extract possible hierarchies from our c-TF-IDF matrix:
hierarchical_topics = topic_model.hierarchical_topics(docs)
The resulting hierarchical_topics
is a dataframe in which merged topics are described. For example, if you would
merge two topics, what would the topic representation of the new topic be?
Linkage functions¶
When creating the potential hierarchical nature of topics, we use Scipy's ward linkage
function as a default
to generate the hierarchy. However, you might want to use a different linkage function
for your use case, such as single
, complete
, average
, centroid
, or median
. In BERTopic, you can define the
linkage function yourself, including the distance function that you would like to use:
from scipy.cluster import hierarchy as sch
from bertopic import BERTopic
topic_model = BERTopic()
topics, probs = topic_model.fit_transform(docs)
# Hierarchical topics
linkage_function = lambda x: sch.linkage(x, 'single', optimal_ordering=True)
hierarchical_topics = topic_model.hierarchical_topics(docs, linkage_function=linkage_function)
Visualizations¶
To visualize these results, we can start by running a familiar function, namely topic_model.visualize_hierarchy
:
topic_model.visualize_hierarchy(hierarchical_topics=hierarchical_topics)
If you hover over the black circles, you will see the topic representation at that level of the hierarchy. These representations help you understand the effect of merging certain topics. Some might be logical to merge whilst others might not. Moreover, we can now see which sub-topics can be found within certain larger themes.
Although this gives a nice overview of the potential hierarchy, hovering over all black circles can be tiresome. Instead, we can
use topic_model.get_topic_tree
to create a text-based representation of this hierarchy. Although the general structure is more difficult
to view, we can see better which topics could be logically merged:
>>> tree = topic_model.get_topic_tree(hierarchical_topics)
>>> print(tree)
.
ββatheists_atheism_god_moral_atheist
ββatheists_atheism_god_atheist_argument
β βββ ββatheists_atheism_god_atheist_argument ββ Topic: 21
β βββ ββbr_god_exist_genetic_existence ββ Topic: 124
βββ ββmoral_morality_objective_immoral_morals ββ Topic: 29
Click here to view the full tree.
.
ββpeople_armenian_said_god_armenians
β ββgod_jesus_jehovah_lord_christ
β β ββgod_jesus_jehovah_lord_christ
β β β ββjehovah_lord_mormon_mcconkie_god
β β β β βββ ββra_satan_thou_god_lucifer ββ Topic: 94
β β β β βββ ββjehovah_lord_mormon_mcconkie_unto ββ Topic: 78
β β β ββjesus_mary_god_hell_sin
β β β ββjesus_hell_god_eternal_heaven
β β β β ββhell_jesus_eternal_god_heaven
β β β β β βββ ββjesus_tomb_disciples_resurrection_john ββ Topic: 69
β β β β β βββ ββhell_eternal_god_jesus_heaven ββ Topic: 53
β β β β βββ ββaaron_baptism_sin_law_god ββ Topic: 89
β β β βββ ββmary_sin_maria_priest_conception ββ Topic: 56
β β βββ ββmarriage_married_marry_ceremony_marriages ββ Topic: 110
β ββpeople_armenian_armenians_said_mr
β ββpeople_armenian_armenians_said_israel
β β ββgod_homosexual_homosexuality_atheists_sex
β β β ββhomosexual_homosexuality_sex_gay_homosexuals
β β β β βββ ββkinsey_sex_gay_men_sexual ββ Topic: 44
β β β β ββhomosexuality_homosexual_sin_homosexuals_gay
β β β β βββ ββgay_homosexual_homosexuals_sexual_cramer ββ Topic: 50
β β β β βββ ββhomosexuality_homosexual_sin_paul_sex ββ Topic: 27
β β β ββgod_atheists_atheism_moral_atheist
β β β ββislam_quran_judas_islamic_book
β β β β βββ ββjim_context_challenges_articles_quote ββ Topic: 36
β β β β ββislam_quran_judas_islamic_book
β β β β βββ ββislam_quran_islamic_rushdie_muslims ββ Topic: 31
β β β β βββ ββjudas_scripture_bible_books_greek ββ Topic: 33
β β β ββatheists_atheism_god_moral_atheist
β β β ββatheists_atheism_god_atheist_argument
β β β β βββ ββatheists_atheism_god_atheist_argument ββ Topic: 21
β β β β βββ ββbr_god_exist_genetic_existence ββ Topic: 124
β β β βββ ββmoral_morality_objective_immoral_morals ββ Topic: 29
β β ββarmenian_armenians_people_israel_said
β β ββarmenian_armenians_israel_people_jews
β β β ββtax_rights_government_income_taxes
β β β β βββ ββrights_right_slavery_slaves_residence ββ Topic: 106
β β β β ββtax_government_taxes_income_libertarians
β β β β βββ ββgovernment_libertarians_libertarian_regulation_party ββ Topic: 58
β β β β βββ ββtax_taxes_income_billion_deficit ββ Topic: 41
β β β ββarmenian_armenians_israel_people_jews
β β β ββgun_guns_militia_firearms_amendment
β β β β βββ ββblacks_penalty_death_cruel_punishment ββ Topic: 55
β β β β βββ ββgun_guns_militia_firearms_amendment ββ Topic: 7
β β β ββarmenian_armenians_israel_jews_turkish
β β β βββ ββisrael_israeli_jews_arab_jewish ββ Topic: 4
β β β βββ ββarmenian_armenians_turkish_armenia_azerbaijan ββ Topic: 15
β β ββstephanopoulos_president_mr_myers_ms
β β βββ ββserbs_muslims_stephanopoulos_mr_bosnia ββ Topic: 35
β β βββ ββmyers_stephanopoulos_president_ms_mr ββ Topic: 87
β ββbatf_fbi_koresh_compound_gas
β βββ ββreno_workers_janet_clinton_waco ββ Topic: 77
β ββbatf_fbi_koresh_gas_compound
β ββbatf_koresh_fbi_warrant_compound
β β βββ ββbatf_warrant_raid_compound_fbi ββ Topic: 42
β β βββ ββkoresh_batf_fbi_children_compound ββ Topic: 61
β βββ ββfbi_gas_tear_bds_building ββ Topic: 23
ββuse_like_just_dont_new
ββgame_team_year_games_like
β ββgame_team_games_25_year
β β ββgame_team_games_25_season
β β β ββwindow_printer_use_problem_mhz
β β β β ββmhz_wire_simms_wiring_battery
β β β β β ββsimms_mhz_battery_cpu_heat
β β β β β β ββsimms_pds_simm_vram_lc
β β β β β β β βββ ββpds_nubus_lc_slot_card ββ Topic: 119
β β β β β β β βββ ββsimms_simm_vram_meg_dram ββ Topic: 32
β β β β β β ββmhz_battery_cpu_heat_speed
β β β β β β ββmhz_cpu_speed_heat_fan
β β β β β β β ββmhz_cpu_speed_heat_fan
β β β β β β β β βββ ββfan_cpu_heat_sink_fans ββ Topic: 92
β β β β β β β β βββ ββmhz_speed_cpu_fpu_clock ββ Topic: 22
β β β β β β β βββ ββmonitor_turn_power_computer_electricity ββ Topic: 91
β β β β β β ββbattery_batteries_concrete_duo_discharge
β β β β β β βββ ββduo_battery_apple_230_problem ββ Topic: 121
β β β β β β βββ ββbattery_batteries_concrete_discharge_temperature ββ Topic: 75
β β β β β ββwire_wiring_ground_neutral_outlets
β β β β β ββwire_wiring_ground_neutral_outlets
β β β β β β ββwire_wiring_ground_neutral_outlets
β β β β β β β βββ ββleds_uv_blue_light_boards ββ Topic: 66
β β β β β β β βββ ββwire_wiring_ground_neutral_outlets ββ Topic: 120
β β β β β β ββscope_scopes_phone_dial_number
β β β β β β βββ ββdial_number_phone_line_output ββ Topic: 93
β β β β β β βββ ββscope_scopes_motorola_generator_oscilloscope ββ Topic: 113
β β β β β ββcelp_dsp_sampling_antenna_digital
β β β β β βββ ββantenna_antennas_receiver_cable_transmitter ββ Topic: 70
β β β β β βββ ββcelp_dsp_sampling_speech_voice ββ Topic: 52
β β β β ββwindow_printer_xv_mouse_windows
β β β β ββwindow_xv_error_widget_problem
β β β β β ββerror_symbol_undefined_xterm_rx
β β β β β β βββ ββsymbol_error_undefined_doug_parse ββ Topic: 63
β β β β β β βββ ββrx_remote_server_xdm_xterm ββ Topic: 45
β β β β β ββwindow_xv_widget_application_expose
β β β β β ββwindow_widget_expose_application_event
β β β β β β βββ ββgc_mydisplay_draw_gxxor_drawing ββ Topic: 103
β β β β β β βββ ββwindow_widget_application_expose_event ββ Topic: 25
β β β β β ββxv_den_polygon_points_algorithm
β β β β β βββ ββden_polygon_points_algorithm_polygons ββ Topic: 28
β β β β β βββ ββxv_24bit_image_bit_images ββ Topic: 57
β β β β ββprinter_fonts_print_mouse_postscript
β β β β ββprinter_fonts_print_font_deskjet
β β β β β βββ ββscanner_logitech_grayscale_ocr_scanman ββ Topic: 108
β β β β β ββprinter_fonts_print_font_deskjet
β β β β β βββ ββprinter_print_deskjet_hp_ink ββ Topic: 18
β β β β β βββ ββfonts_font_truetype_tt_atm ββ Topic: 49
β β β β ββmouse_ghostscript_midi_driver_postscript
β β β β ββghostscript_midi_postscript_files_file
β β β β β βββ ββghostscript_postscript_pageview_ghostview_dsc ββ Topic: 104
β β β β β ββmidi_sound_file_windows_driver
β β β β β βββ ββlocation_mar_file_host_rwrr ββ Topic: 83
β β β β β βββ ββmidi_sound_driver_blaster_soundblaster ββ Topic: 98
β β β β βββ ββmouse_driver_mice_ball_problem ββ Topic: 68
β β β ββgame_team_games_25_season
β β β ββ1st_sale_condition_comics_hulk
β β β β ββsale_condition_offer_asking_cd
β β β β β ββcondition_stereo_amp_speakers_asking
β β β β β β βββ ββmiles_car_amfm_toyota_cassette ββ Topic: 62
β β β β β β βββ ββamp_speakers_condition_stereo_audio ββ Topic: 24
β β β β β ββgames_sale_pom_cds_shipping
β β β β β ββpom_cds_sale_shipping_cd
β β β β β β βββ ββsize_shipping_sale_condition_mattress ββ Topic: 100
β β β β β β βββ ββpom_cds_cd_sale_picture ββ Topic: 37
β β β β β βββ ββgames_game_snes_sega_genesis ββ Topic: 40
β β β β ββ1st_hulk_comics_art_appears
β β β β ββ1st_hulk_comics_art_appears
β β β β β ββlens_tape_camera_backup_lenses
β β β β β β βββ ββtape_backup_tapes_drive_4mm ββ Topic: 107
β β β β β β βββ ββlens_camera_lenses_zoom_pouch ββ Topic: 114
β β β β β ββ1st_hulk_comics_art_appears
β β β β β βββ ββ1st_hulk_comics_art_appears ββ Topic: 105
β β β β β βββ ββbooks_book_cover_trek_chemistry ββ Topic: 125
β β β β ββtickets_hotel_ticket_voucher_package
β β β β βββ ββhotel_voucher_package_vacation_room ββ Topic: 74
β β β β βββ ββtickets_ticket_june_airlines_july ββ Topic: 84
β β β ββgame_team_games_season_hockey
β β β ββgame_hockey_team_25_550
β β β β βββ ββespn_pt_pts_game_la ββ Topic: 17
β β β β βββ ββteam_25_game_hockey_550 ββ Topic: 2
β β β βββ ββyear_game_hit_baseball_players ββ Topic: 0
β β ββbike_car_greek_insurance_msg
β β ββcar_bike_insurance_cars_engine
β β β ββcar_insurance_cars_radar_engine
β β β β ββinsurance_health_private_care_canada
β β β β β βββ ββinsurance_health_private_care_canada ββ Topic: 99
β β β β β βββ ββinsurance_car_accident_rates_sue ββ Topic: 82
β β β β ββcar_cars_radar_engine_detector
β β β β ββcar_radar_cars_detector_engine
β β β β β βββ ββradar_detector_detectors_ka_alarm ββ Topic: 39
β β β β β ββcar_cars_mustang_ford_engine
β β β β β βββ ββclutch_shift_shifting_transmission_gear ββ Topic: 88
β β β β β βββ ββcar_cars_mustang_ford_v8 ββ Topic: 14
β β β β ββoil_diesel_odometer_diesels_car
β β β β ββodometer_oil_sensor_car_drain
β β β β β βββ ββodometer_sensor_speedo_gauge_mileage ββ Topic: 96
β β β β β βββ ββoil_drain_car_leaks_taillights ββ Topic: 102
β β β β βββ ββdiesel_diesels_emissions_fuel_oil ββ Topic: 79
β β β ββbike_riding_ride_bikes_motorcycle
β β β ββbike_ride_riding_bikes_lane
β β β β βββ ββbike_ride_riding_lane_car ββ Topic: 11
β β β β βββ ββbike_bikes_miles_honda_motorcycle ββ Topic: 19
β β β βββ ββcountersteering_bike_motorcycle_rear_shaft ββ Topic: 46
β β ββgreek_msg_kuwait_greece_water
β β ββgreek_msg_kuwait_greece_water
β β β ββgreek_msg_kuwait_greece_dog
β β β β ββgreek_msg_kuwait_greece_dog
β β β β β ββgreek_kuwait_greece_turkish_greeks
β β β β β β βββ ββgreek_greece_turkish_greeks_cyprus ββ Topic: 71
β β β β β β βββ ββkuwait_iraq_iran_gulf_arabia ββ Topic: 76
β β β β β ββmsg_dog_drugs_drug_food
β β β β β ββdog_dogs_cooper_trial_weaver
β β β β β β βββ ββclinton_bush_quayle_reagan_panicking ββ Topic: 101
β β β β β β ββdog_dogs_cooper_trial_weaver
β β β β β β βββ ββcooper_trial_weaver_spence_witnesses ββ Topic: 90
β β β β β β βββ ββdog_dogs_bike_trained_springer ββ Topic: 67
β β β β β ββmsg_drugs_drug_food_chinese
β β β β β βββ ββmsg_food_chinese_foods_taste ββ Topic: 30
β β β β β βββ ββdrugs_drug_marijuana_cocaine_alcohol ββ Topic: 72
β β β β ββwater_theory_universe_science_larsons
β β β β ββwater_nuclear_cooling_steam_dept
β β β β β βββ ββrocketry_rockets_engines_nuclear_plutonium ββ Topic: 115
β β β β β ββwater_cooling_steam_dept_plants
β β β β β βββ ββwater_dept_phd_environmental_atmospheric ββ Topic: 97
β β β β β βββ ββcooling_water_steam_towers_plants ββ Topic: 109
β β β β ββtheory_universe_larsons_larson_science
β β β β βββ ββtheory_universe_larsons_larson_science ββ Topic: 54
β β β β βββ ββoort_cloud_grbs_gamma_burst ββ Topic: 80
β β β ββhelmet_kirlian_photography_lock_wax
β β β ββhelmet_kirlian_photography_leaf_mask
β β β β ββkirlian_photography_leaf_pictures_deleted
β β β β β ββdeleted_joke_stuff_maddi_nickname
β β β β β β βββ ββjoke_maddi_nickname_nicknames_frank ββ Topic: 43
β β β β β β βββ ββdeleted_stuff_bookstore_joke_motto ββ Topic: 81
β β β β β βββ ββkirlian_photography_leaf_pictures_aura ββ Topic: 85
β β β β ββhelmet_mask_liner_foam_cb
β β β β βββ ββhelmet_liner_foam_cb_helmets ββ Topic: 112
β β β β βββ ββmask_goalies_77_santore_tl ββ Topic: 123
β β β ββlock_wax_paint_plastic_ear
β β β βββ ββlock_cable_locks_bike_600 ββ Topic: 117
β β β ββwax_paint_ear_plastic_skin
β β β βββ ββwax_paint_plastic_scratches_solvent ββ Topic: 65
β β β βββ ββear_wax_skin_greasy_acne ββ Topic: 116
β β ββm4_mp_14_mw_mo
β β ββm4_mp_14_mw_mo
β β β βββ ββm4_mp_14_mw_mo ββ Topic: 111
β β β βββ ββtest_ensign_nameless_deane_deanebinahccbrandeisedu ββ Topic: 118
β β βββ ββites_cheek_hello_hi_ken ββ Topic: 3
β ββspace_medical_health_disease_cancer
β ββmedical_health_disease_cancer_patients
β β βββ ββcancer_centers_center_medical_research ββ Topic: 122
β β ββhealth_medical_disease_patients_hiv
β β ββpatients_medical_disease_candida_health
β β β βββ ββcandida_yeast_infection_gonorrhea_infections ββ Topic: 48
β β β ββpatients_disease_cancer_medical_doctor
β β β βββ ββhiv_medical_cancer_patients_doctor ββ Topic: 34
β β β βββ ββpain_drug_patients_disease_diet ββ Topic: 26
β β βββ ββhealth_newsgroup_tobacco_vote_votes ββ Topic: 9
β ββspace_launch_nasa_shuttle_orbit
β ββspace_moon_station_nasa_launch
β β βββ ββsky_advertising_billboard_billboards_space ββ Topic: 59
β β βββ ββspace_station_moon_redesign_nasa ββ Topic: 16
β ββspace_mission_hst_launch_orbit
β ββspace_launch_nasa_orbit_propulsion
β β βββ ββspace_launch_nasa_propulsion_astronaut ββ Topic: 47
β β βββ ββorbit_km_jupiter_probe_earth ββ Topic: 86
β βββ ββhst_mission_shuttle_orbit_arrays ββ Topic: 60
ββdrive_file_key_windows_use
ββkey_file_jpeg_encryption_image
β ββkey_encryption_clipper_chip_keys
β β βββ ββkey_clipper_encryption_chip_keys ββ Topic: 1
β β βββ ββentry_file_ripem_entries_key ββ Topic: 73
β ββjpeg_image_file_gif_images
β ββmotif_graphics_ftp_available_3d
β β ββmotif_graphics_openwindows_ftp_available
β β β βββ ββopenwindows_motif_xview_windows_mouse ββ Topic: 20
β β β βββ ββgraphics_widget_ray_3d_available ββ Topic: 95
β β βββ ββ3d_machines_version_comments_contact ββ Topic: 38
β ββjpeg_image_gif_images_format
β βββ ββgopher_ftp_files_stuffit_images ββ Topic: 51
β βββ ββjpeg_image_gif_format_images ββ Topic: 13
ββdrive_db_card_scsi_windows
ββdb_windows_dos_mov_os2
β βββ ββcopy_protection_program_software_disk ββ Topic: 64
β βββ ββdb_windows_dos_mov_os2 ββ Topic: 8
ββdrive_card_scsi_drives_ide
ββdrive_scsi_drives_ide_disk
β βββ ββdrive_scsi_drives_ide_disk ββ Topic: 6
β βββ ββmeg_sale_ram_drive_shipping ββ Topic: 12
ββcard_modem_monitor_video_drivers
βββ ββcard_monitor_video_drivers_vga ββ Topic: 5
βββ ββmodem_port_serial_irq_com ββ Topic: 10
Merge topics¶
After seeing the potential hierarchy of your topic, you might want to merge specific
topics. For example, if topic 1 is
1_space_launch_moon_nasa
and topic 2 is 2_spacecraft_solar_space_orbit
it might
make sense to merge those two topics as they are quite similar in meaning. In BERTopic,
you can use .merge_topics
to manually select and merge those topics. Doing so will
update their topic representation which in turn updates the entire model:
topics_to_merge = [1, 2]
topic_model.merge_topics(docs, topics_to_merge)
If you have several groups of topics you want to merge, create a list of lists instead:
topics_to_merge = [[1, 2],
[3, 4]]
topic_model.merge_topics(docs, topics_to_merge)