Skip to content

LiteLLM

Extract keywords using LiteLLM to call any LLM API using OpenAI format such as Anthropic, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.

NOTE: The resulting keywords are expected to be separated by commas so
any changes to the prompt will have to make sure that the resulting
keywords are comma-separated.

!!! arguments
    model: Model to use within LiteLLM, defaults to OpenAI's `"gpt-3.5-turbo"`.
    !!! generator_kwargs "Kwargs passed to `litellm.completion`"
                      for fine-tuning the output.
    !!! prompt "The prompt to be used in the model. If no prompt is given,"
            `self.default_prompt_` is used instead.
            NOTE: Use `"[DOCUMENT]"` in the prompt
            to decide where the document needs to be inserted
    !!! delay_in_seconds "The delay in seconds between consecutive prompts"
                      in order to prevent RateLimitErrors.
    !!! verbose "Set this to True if you want to see a progress bar for the"
             keyword extraction.

Usage:

Let's use OpenAI as an example:

```python
import os
from keybert.llm import LiteLLM
from keybert import KeyLLM

# Select LLM
os.environ["OPENAI_API_KEY"] = "sk-..."
llm = LiteLLM("gpt-3.5-turbo")

# Load it in KeyLLM
kw_model = KeyLLM(llm)

# Extract keywords
document = "The website mentions that it only takes a couple of days to deliver but I still have not received mine."
keywords = kw_model.extract_keywords(document)
```

You can also use a custom prompt:

```python
prompt = "I have the following document: [DOCUMENT]

This document contains the following keywords separated by commas: '" llm = LiteLLM("gpt-3.5-turbo", prompt=prompt) ```

Source code in keybert\llm\_litellm.py
class LiteLLM(BaseLLM):
    """ Extract keywords using LiteLLM to call any LLM API using OpenAI format 
    such as Anthropic, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.

    NOTE: The resulting keywords are expected to be separated by commas so
    any changes to the prompt will have to make sure that the resulting
    keywords are comma-separated.

    Arguments:
        model: Model to use within LiteLLM, defaults to OpenAI's `"gpt-3.5-turbo"`.
        generator_kwargs: Kwargs passed to `litellm.completion`
                          for fine-tuning the output.
        prompt: The prompt to be used in the model. If no prompt is given,
                `self.default_prompt_` is used instead.
                NOTE: Use `"[DOCUMENT]"` in the prompt
                to decide where the document needs to be inserted
        delay_in_seconds: The delay in seconds between consecutive prompts
                          in order to prevent RateLimitErrors.
        verbose: Set this to True if you want to see a progress bar for the
                 keyword extraction.

    Usage:

    Let's use OpenAI as an example:

    ```python
    import os
    from keybert.llm import LiteLLM
    from keybert import KeyLLM

    # Select LLM
    os.environ["OPENAI_API_KEY"] = "sk-..."
    llm = LiteLLM("gpt-3.5-turbo")

    # Load it in KeyLLM
    kw_model = KeyLLM(llm)

    # Extract keywords
    document = "The website mentions that it only takes a couple of days to deliver but I still have not received mine."
    keywords = kw_model.extract_keywords(document)
    ```

    You can also use a custom prompt:

    ```python
    prompt = "I have the following document: [DOCUMENT] \nThis document contains the following keywords separated by commas: '"
    llm = LiteLLM("gpt-3.5-turbo", prompt=prompt)
    ```
    """
    def __init__(self,
                 model: str = "gpt-3.5-turbo",
                 prompt: str = None,
                 generator_kwargs: Mapping[str, Any] = {},
                 delay_in_seconds: float = None,
                 verbose: bool = False
                 ):
        self.model = model

        if prompt is None:
            self.prompt = DEFAULT_PROMPT
        else:
            self.prompt = prompt

        self.default_prompt_ = DEFAULT_PROMPT
        self.delay_in_seconds = delay_in_seconds
        self.verbose = verbose

        self.generator_kwargs = generator_kwargs
        if self.generator_kwargs.get("model"):
            self.model = generator_kwargs.get("model")
        if self.generator_kwargs.get("prompt"):
            del self.generator_kwargs["prompt"]

    def extract_keywords(self, documents: List[str], candidate_keywords: List[List[str]] = None):
        """ Extract topics

        Arguments:
            documents: The documents to extract keywords from
            candidate_keywords: A list of candidate keywords that the LLM will fine-tune
                        For example, it will create a nicer representation of
                        the candidate keywords, remove redundant keywords, or
                        shorten them depending on the input prompt.

        Returns:
            all_keywords: All keywords for each document
        """
        all_keywords = []
        candidate_keywords = process_candidate_keywords(documents, candidate_keywords)

        for document, candidates in tqdm(zip(documents, candidate_keywords), disable=not self.verbose):
            prompt = self.prompt.replace("[DOCUMENT]", document)
            if candidates is not None:
                prompt = prompt.replace("[CANDIDATES]", ", ".join(candidates))

            # Delay
            if self.delay_in_seconds:
                time.sleep(self.delay_in_seconds)

            # Use a chat model
            messages = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ]
            kwargs = {"model": self.model, "messages": messages, **self.generator_kwargs}

            response = completion(**kwargs)
            keywords = response["choices"][0]["message"]["content"].strip()
            keywords = [keyword.strip() for keyword in keywords.split(",")]
            all_keywords.append(keywords)

        return all_keywords

extract_keywords(self, documents, candidate_keywords=None)

Extract topics

Parameters:

Name Type Description Default
documents List[str]

The documents to extract keywords from

required
candidate_keywords List[List[str]]

A list of candidate keywords that the LLM will fine-tune For example, it will create a nicer representation of the candidate keywords, remove redundant keywords, or shorten them depending on the input prompt.

None

Returns:

Type Description
all_keywords

All keywords for each document

Source code in keybert\llm\_litellm.py
def extract_keywords(self, documents: List[str], candidate_keywords: List[List[str]] = None):
    """ Extract topics

    Arguments:
        documents: The documents to extract keywords from
        candidate_keywords: A list of candidate keywords that the LLM will fine-tune
                    For example, it will create a nicer representation of
                    the candidate keywords, remove redundant keywords, or
                    shorten them depending on the input prompt.

    Returns:
        all_keywords: All keywords for each document
    """
    all_keywords = []
    candidate_keywords = process_candidate_keywords(documents, candidate_keywords)

    for document, candidates in tqdm(zip(documents, candidate_keywords), disable=not self.verbose):
        prompt = self.prompt.replace("[DOCUMENT]", document)
        if candidates is not None:
            prompt = prompt.replace("[CANDIDATES]", ", ".join(candidates))

        # Delay
        if self.delay_in_seconds:
            time.sleep(self.delay_in_seconds)

        # Use a chat model
        messages = [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt}
        ]
        kwargs = {"model": self.model, "messages": messages, **self.generator_kwargs}

        response = completion(**kwargs)
        keywords = response["choices"][0]["message"]["content"].strip()
        keywords = [keyword.strip() for keyword in keywords.split(",")]
        all_keywords.append(keywords)

    return all_keywords