KeyBERT
¶
A minimal method for keyword extraction with BERT.
The keyword extraction is done by finding the sub-phrases in a document that are the most similar to the document itself.
First, document embeddings are extracted with BERT to get a document-level representation. Then, word embeddings are extracted for N-gram words/phrases. Finally, we use cosine similarity to find the words/phrases that are the most similar to the document.
The most similar words could then be identified as the words that best describe the entire document.
Source code in keybert\_model.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
__init__(model='all-MiniLM-L6-v2', llm=None)
¶
KeyBERT initialization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Use a custom embedding model or a specific KeyBERT Backend. The following backends are currently supported: * SentenceTransformers * 🤗 Transformers * Flair * Spacy * Gensim * USE (TF-Hub) You can also pass in a string that points to one of the following sentence-transformers models: * https://www.sbert.net/docs/pretrained_models.html |
'all-MiniLM-L6-v2'
|
|
llm
|
BaseLLM
|
The Large Language Model used to extract keywords |
None
|
Source code in keybert\_model.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
extract_embeddings(docs, candidates=None, keyphrase_ngram_range=(1, 1), stop_words='english', min_df=1, vectorizer=None)
¶
Extract document and word embeddings for the input documents and the generated candidate keywords/keyphrases respectively.
Note that all potential keywords/keyphrases are not returned but only their
word embeddings. This means that the values of candidates
, keyphrase_ngram_range
,
stop_words
, and min_df
need to be the same between using .extract_embeddings
and
.extract_keywords
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Union[str, List[str]]
|
The document(s) for which to extract keywords/keyphrases |
required |
candidates
|
List[str]
|
Candidate keywords/keyphrases to use instead of extracting them from the document(s)
NOTE: This is not used if you passed a |
None
|
keyphrase_ngram_range
|
Tuple[int, int]
|
Length, in words, of the extracted keywords/keyphrases.
NOTE: This is not used if you passed a |
(1, 1)
|
stop_words
|
Union[str, List[str]]
|
Stopwords to remove from the document.
NOTE: This is not used if you passed a |
'english'
|
min_df
|
int
|
Minimum document frequency of a word across all documents
if keywords for multiple documents need to be extracted.
NOTE: This is not used if you passed a |
1
|
vectorizer
|
CountVectorizer
|
Pass in your own |
None
|
Returns:
Name | Type | Description |
---|---|---|
doc_embeddings |
Union[List[Tuple[str, float]], List[List[Tuple[str, float]]]]
|
The embeddings of each document. |
word_embeddings |
Union[List[Tuple[str, float]], List[List[Tuple[str, float]]]]
|
The embeddings of each potential keyword/keyphrase across
across the vocabulary of the set of input documents.
NOTE: The |
Usage:
To generate the word and document embeddings from a set of documents:
from keybert import KeyBERT
kw_model = KeyBERT()
doc_embeddings, word_embeddings = kw_model.extract_embeddings(docs)
You can then use these embeddings and pass them to .extract_keywords
to speed up the tuning the model:
keywords = kw_model.extract_keywords(docs, doc_embeddings=doc_embeddings, word_embeddings=word_embeddings)
Source code in keybert\_model.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
extract_keywords(docs, candidates=None, keyphrase_ngram_range=(1, 1), stop_words='english', top_n=5, min_df=1, use_maxsum=False, use_mmr=False, diversity=0.5, nr_candidates=20, vectorizer=None, highlight=False, seed_keywords=None, doc_embeddings=None, word_embeddings=None, threshold=None)
¶
Extract keywords and/or keyphrases.
To get the biggest speed-up, make sure to pass multiple documents at once instead of iterating over a single document.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Union[str, List[str]]
|
The document(s) for which to extract keywords/keyphrases |
required |
candidates
|
List[str]
|
Candidate keywords/keyphrases to use instead of extracting them from the document(s)
NOTE: This is not used if you passed a |
None
|
keyphrase_ngram_range
|
Tuple[int, int]
|
Length, in words, of the extracted keywords/keyphrases.
NOTE: This is not used if you passed a |
(1, 1)
|
stop_words
|
Union[str, List[str]]
|
Stopwords to remove from the document.
NOTE: This is not used if you passed a |
'english'
|
top_n
|
int
|
Return the top n keywords/keyphrases |
5
|
min_df
|
int
|
Minimum document frequency of a word across all documents
if keywords for multiple documents need to be extracted.
NOTE: This is not used if you passed a |
1
|
use_maxsum
|
bool
|
Whether to use Max Sum Distance for the selection of keywords/keyphrases. |
False
|
use_mmr
|
bool
|
Whether to use Maximal Marginal Relevance (MMR) for the selection of keywords/keyphrases. |
False
|
diversity
|
float
|
The diversity of the results between 0 and 1 if |
0.5
|
nr_candidates
|
int
|
The number of candidates to consider if |
20
|
vectorizer
|
CountVectorizer
|
Pass in your own |
None
|
highlight
|
bool
|
Whether to print the document and highlight its keywords/keyphrases. NOTE: This does not work if multiple documents are passed. |
False
|
seed_keywords
|
Union[List[str], List[List[str]]]
|
Seed keywords that may guide the extraction of keywords by
steering the similarities towards the seeded keywords.
NOTE: when multiple documents are passed,
|
None
|
doc_embeddings
|
array
|
The embeddings of each document. |
None
|
word_embeddings
|
array
|
The embeddings of each potential keyword/keyphrase across
across the vocabulary of the set of input documents.
NOTE: The |
None
|
threshold
|
float
|
Minimum similarity value between 0 and 1 used to decide how similar documents need to receive the same keywords. |
None
|
Returns:
Name | Type | Description |
---|---|---|
keywords |
Union[List[Tuple[str, float]], List[List[Tuple[str, float]]]]
|
The top n keywords for a document with their respective distances to the input document. |
Usage:
To extract keywords from a single document:
from keybert import KeyBERT
kw_model = KeyBERT()
keywords = kw_model.extract_keywords(doc)
To extract keywords from multiple documents, which is typically quite a bit faster:
from keybert import KeyBERT
kw_model = KeyBERT()
keywords = kw_model.extract_keywords(docs)
Source code in keybert\_model.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|